Broad targeting of angiogenesis for cancer prevention and therapy.

نویسندگان

  • Zongwei Wang
  • Charlotta Dabrosin
  • Xin Yin
  • Mark M Fuster
  • Alexandra Arreola
  • W Kimryn Rathmell
  • Daniele Generali
  • Ganji P Nagaraju
  • Bassel El-Rayes
  • Domenico Ribatti
  • Yi Charlie Chen
  • Kanya Honoki
  • Hiromasa Fujii
  • Alexandros G Georgakilas
  • Somaira Nowsheen
  • Amedeo Amedei
  • Elena Niccolai
  • Amr Amin
  • S Salman Ashraf
  • Bill Helferich
  • Xujuan Yang
  • Gunjan Guha
  • Dipita Bhakta
  • Maria Rosa Ciriolo
  • Katia Aquilano
  • Sophie Chen
  • Dorota Halicka
  • Sulma I Mohammed
  • Asfar S Azmi
  • Alan Bilsland
  • W Nicol Keith
  • Lasse D Jensen
چکیده

Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies

Objective(s): Emergence of resistant tumor cells to the current therapeutics is the main hindrance in cancer treatment. Combination therapy, which mixes two or more drugs, is a way to overcome resistant problems of cancer cells to current treatments.  Nanobodies are promising tools in cancer therapy due to their high affinity as well as high penetration to tumor sites....

متن کامل

Cancer virotherapy: Targeting cancer cells by microRNA mechanism for selective replication of oncolytic viruses in these cells

Cancer, as one of the most serious public health problems, is the second-leading cause of death in the world after cardiovascular disease. The number of patients and the resulting mortality are increasing worldwide; therefore, early diagnosis, prevention, and effective treatment of cancer are very important. Current treatments such as chemotherapy and radiation therapy are often non-selective a...

متن کامل

Design, Synthesis and Biological Evaluation of Ketoprofen Conjugated To RGD/NGR for Targeted Cancer Therapy

It is well known that Arginine-Glycine-Aspartic acid (RGD) and Asparagine-Glycine-Arginine (NGR) peptides preferentially bind to integrin receptors and aminopeptidase Nrespectively and these two receptors play important roles in angiogenesis. Therefore ketoprofenas a non-selective cox Inhibitor was conjugated with linear RGD and NGR to take advantageof targeting capability of these two motifs a...

متن کامل

Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells

Cancer stem cells (CSCs) are known as the major reason for therapy resistance. Recently, natural herbal compounds are suggested to have a significant role in inhibiting the breast cancer stem cells (BCSCs). The aim of this study was to explore the effective natural herbal compounds against BCSCs.This review article was designed based on the BCSCs, mechanisms of therapy resistance and natural he...

متن کامل

Design, Synthesis and Biological Evaluation of Ketoprofen Conjugated To RGD/NGR for Targeted Cancer Therapy

It is well known that Arginine-Glycine-Aspartic acid (RGD) and Asparagine-Glycine-Arginine (NGR) peptides preferentially bind to integrin receptors and aminopeptidase Nrespectively and these two receptors play important roles in angiogenesis. Therefore ketoprofenas a non-selective cox Inhibitor was conjugated with linear RGD and NGR to take advantageof targeting capability of these two motifs a...

متن کامل

مطالعه اثر مهاری ایبوپروفن بر رگ زایی در سلول های بنیادی سرطان معده

Background and purpose: Angiogenesis provides proper nutrition and helps to the development and spread of cancer cells. Cancer stem cells are a rare population of tumor cells responsible for initiation, spreading and growth of cancer. Angiogenesis occurs more in cancer stem cells compared with other cancer cells. Ibuprofen, as a member of nonsteroidal anti-inflammatory drugs (NSAIDs) group is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Seminars in cancer biology

دوره 35 Suppl  شماره 

صفحات  -

تاریخ انتشار 2015